MBI Videos

Mariel Vazquez

  • video photo
    Mariel Vazquez

    In Escherichia coli DNA replication yields two interlinked circular chromosomes. Returning the chromosomes to an unlinked monomeric state is essential to cell survival. Simplification of DNA topology is mediated by enzymes, such as recombinases and topoisomerases. Recombinases act by a local reconnection event. We investigate analytically minimal pathways of unlinking by local reconnection. We introduce a Monte Carlo method to simulate local reconnection, provide a quantitative measure to distinguish among pathways and identify a most probable pathway. These results point to a universal property relevant to any local reconnection event between two sites along one or two circles.

  • video photo
    Mariel Vazquez
    Cellular processes such as replication, recombination, and packing change the topology of DNA. Controlling these changes is key to ensuring stability inside the cell. We use topological and computational methods to study the action of enzymes that simplify the topology of DNA during replication. I will review these methods and will expand on some thoughts on DNA folding.

View Videos By